利用OpenVINO以BLIP實現視覺語言邊緣AI部署
隨著電腦視覺和自然語言處理領域的快速發展,視覺與語言的融合越來越受到研究人員的重視。在這個背景下,BLIP引起了廣泛關注--該模型在大規模的影像文字資料集上預訓練深度神經網路模型,以提高下游視覺語言任務的性能,如影像文字檢索、影像描述和視覺問答。本文作者將帶領讀者一步步了解如何在研揚科技(AAEON)的新產品UP Squared Pro 7000 Edg上,利用OpenVINO來最佳化BLIP的推論加速。
用Llama 2和OpenVINO打造聊天機器人
Meta終於推出了免費商用版本Llama 2,藉著這個機會,我們來分享一下如何用Llama 2和OpenVINO工具套件來打造一款聊天機器人。
最新版OpenVINO 2023.0問世:更輕鬆部署、加速AI應用!
OpenVINO 五週年紀念日即將來臨的此刻,我們很興奮地宣佈OpenVINO最新版本──OpenVINO 2023.0問世!新版本的重點是透過最大限度減少離線轉換、擴大模型支援和推進硬體最佳化來改善開發者之旅,以下讓我們對一些新功能進行深入研究…
AI分割一切:用OpenVINO加速Meta SAM大模型
最近在電腦視覺領域就出現了專屬的物體分割大模型,由Meta開源的「萬物可分割」(SAM)物體分割模型。這個強大的通用分割模型,當然也能用OpenVINO進行最佳化以及推論的加速,使其能方便快速地在Intel的CPU上部署執行。來跟著我們提供的程式碼與步驟一起來動手試試吧!
如何用OpenVINO讓YOLOv8獲得1000+FPS性能?
YOLO又推出了最新的YOLOv8模型,其模型架構創新以及性能提升,使其剛問世就獲得廣大開發者的關注。如果說利用OpenVINO的量化和加速,利用英特爾CPU、整合式顯卡以及獨立顯卡與同一程式碼庫無縫協作,可以獲得1000+ FPS的性能,你相信嗎?我們將一步步教你在利用OpenVINO在英特爾處理器上實現這樣的性能。