輕鬆利用OpenVINO結合LangChain與Llama2打造智慧小助手
LLM大模型存在很多痛點,包括但不限於資料陳舊、無法和外部元件互動等,本文旨在使用 OpenVINO 2023.1新版本的特性加速Llama2模型,為Llama2客製化Prompt,並用LangChain 實現可連網取得最新消息的輔助搜尋功能
運用BF16與NHWC技術實現進階版LLM微調訓練最佳化
本文要來介紹如何利用BF16半精度浮點數以及將影像資料設為NHWC格式兩項技術,來最佳化大型AI模型的訓練速度與記憶體節省,並延續以
如何利用低位元量化技術進一步提升大模型推論性能
相比運算量的增加,大模型推論速度更容易受到記憶體頻寬的影響,導致算力資源無法得到充分發揮,進而影響性能;低位元量化技術是讓大語言模型(LLM)在部署過程中實現性能需求的最佳方案之一,本文將探討低位元量化技術如何幫助LLM提升性能,以及新版OpenVINO對於低位元量化技術的支援。
活用IPEX和Intel GPU加速大型語言模型訓練效率
以IPEX (Intel-Extension-for-PyTorch)搭配Intel硬體產品,可提供最佳化功能大幅提升運作效能。例如透過PyTorch的
Intel攜手生態系夥伴展示AI智慧醫療應用最新成果
英特爾(Intel)攜手24家合作夥伴於年度台灣醫療科技展(Healthcare+ EXPO 2023)共同展示基於最新AI技術的實際應用案例,並將與近300位來自東南亞、東北亞、歐洲、中東、美州的國際代表團專家互相交流分享,以及安排超過80場的商業媒合會議,促進台灣與國際合作機會,持續擴大智慧醫療推廣與應用。
利用Intel平台提升LLM微調與訓練效率:ResNet50+LoRA範例
本文將說明如何善用英特爾(Intel)所研發的新產品和相關技術,來提升AI模型的訓練效率,以便提供更優質的推論功能。為了循序漸進介紹上述的新產品及其相關的使用技術,本文先從大家熟悉ResNet50圖像分類模型做為起步範例,並搭配LoRA來進行外掛訓練,以便從這簡單範例中充分理解如何活用上述的創新產品及相關技術。