如何使用Intel AI PC及OpenVINO實現虛擬主播
為了使大家能更進一步理解如何實作一個簡單離線版(邊緣端)的虛擬主播,可以輸入所需文字,產生對應語音,配合閉嘴人物影片生成新的對嘴影片。接下來就分別從「推論硬體及環境建置介紹」、「MeloTTS 文字轉語音生成」、「Wav2Lip 自動對嘴影片生成」及「建置完整虛擬主播」等四大部份作更進一步說明。
【Arm的AI世界】以TinyML為基礎的高效率嵌入式電腦視覺
本文將透過在配備Ethos-U55 NPU的現代微控制器上執行兩個TinyML應用,來展示NPU的效能優勢。我們將分別在採用和不採用Ethos-U55 NPU的微控制器上運作應用中所使用的 ML模型,以此對推論延遲進行基準測試。
MLPerf大語言模型、生成式AI測項觀察
MLPerf是MLCommons機構訂立出的一系列AI效能標竿測試,包含訓練類、推論類,也依據不同情境再行分類。本文將帶各位了解目前哪些LLM、GenAI已被視為測試基準。
【開箱評測】探索未來:結合迷你PC與生成式AI的個人多媒體助理
以mini PC作為多媒體AI個人助理的應用,展現了AI技術日益貼近日常生活的趨勢,未來這類設備將在提升個人生活品質和工作效率方面扮演越來越重要的角色,而本文將分析NUC BOX-155H這台mini PC在多媒體處理上的效能,並且分享一個未來十分看好、能成為個人多媒體助理的AI模型:Stable Diffusion及其多個版本的發展與應用選擇。
OpenVINO 2024.2姿態模型效能評估:以OpenPose、YOLOv8與3D-Pose為例
本文主要於ASRock NUC BOX-155H平台進行,使用Intel Core Ultra運作的NUC (下一代計算單元)。我們將姿態辨識模型OpenPose、3D Pose、MoveNet 與 YOLOv8 模型轉換為OpenVINO IR模型格式,分別在CPU、iGPU及NPU上進行部署。觀察這些模型在CPU、iGPU及NPU的硬體效能差異,透過實際執行影片推論的過程,觀察NPU的性能表現。
【開箱實測】OpenVINO榨出單板極限,實作離線LLM AI助理!
在當前AI PC問世之際,相信不少人已知道OpenVINO可以加速離線大語言模型(LLM)的推論速度,本篇文章是要更進一步在資源更為受限的單板電腦上進行大語言模型的推論,甚至是實作一個離線大語言模型的AI助理出來!