從CLIP應用領會潛藏空間(Latent space)的魅力
本文將從商店櫃檯的產品推薦應用來說明:我們可以拿CLIP的原始程式碼,搭配商家自有產品圖像(Image)和圖像敘述文句(Text),來訓練出企業自用的CLIP小模型,同時也領會其幕後潛藏空間(Latent space)的運作及其效果。
如何利用低位元量化技術進一步提升大模型推論性能
相比運算量的增加,大模型推論速度更容易受到記憶體頻寬的影響,導致算力資源無法得到充分發揮,進而影響性能;低位元量化技術是讓大語言模型(LLM)在部署過程中實現性能需求的最佳方案之一,本文將探討低位元量化技術如何幫助LLM提升性能,以及新版OpenVINO對於低位元量化技術的支援。
如何選擇最適合你的AI推論模型量化方案?
AI推論模型主要透過量化(Quantization)、修剪(Pruning)和聚類(Clustering)三種方式進行最佳化,本文提出一個決策樹,幫助你選擇最適合的量化技術。
活用IPEX和Intel GPU加速大型語言模型訓練效率
以IPEX (Intel-Extension-for-PyTorch)搭配Intel硬體產品,可提供最佳化功能大幅提升運作效能。例如透過PyTorch的
【Maker 玩 AI】Edge Impulse 搭配 XIAO ESP32-S3 實作影像分類專題
說到近年最強勢的邊緣端 ML 平台,莫過於 Edge Impulse 莫屬了!軟體的易用性搭配硬體的廣泛支援,造就 Edge Impulse 在社大社群上的討論度都勇冠群雄。本篇筆者將實際操作 Edge Impulse 影像分類模型訓練,並且佈署到 XIAO ESP32S3 Sense 這個熱門 MCU 開發板上!
【CAVEDU講堂】MyGPTs:做一個具備指定技能的專屬 ChatGPT 吧!
近期OpenAI dev day 所發表各項更新中,最令人讚嘆的就是 GPTs,任何人都可以透過 GPTs 來做出專屬的 GPT 應用,本文將說明如何使用 GPTs editor 來自行設計出您專屬的 ChatGPT。