【活動報導】OpenVINO讓生成式AI隨手可及
2024年伊始,OpenVINO的最新版本2023.3 LTS正式發表,更進一步降低了生成式AI技術的門檻,為了讓廣大開發者對最新版OpenVINO的強化功能有更深入的了解,Intel與MakerPRO在2024年1月底共同舉辦了第三場OpenVINO DevCon線上講座…
用OpenVINO和LangChain打造你專屬的RAG問答系統
隨著生成式AI的興起,和大語言模型對話聊天的應用變得非常熱門,但這類應用往往只能簡單地和你「聊聊家常」,並不能針對某些特定產業提供非常專業和精準的答案。那有沒有辦法讓你的模型學習到新的知識呢?當然有!在沒有足夠GPU運算資源對模型進行重新訓練的情況下,RAG方式對普通使用者來說更友善。本文就要來探討如何利用OpenVINO以及LangChain工具構建屬於你的RAG問答系統。
輕鬆利用OpenVINO結合LangChain與Llama2打造智慧小助手
LLM大模型存在很多痛點,包括但不限於資料陳舊、無法和外部元件互動等,本文旨在使用 OpenVINO 2023.1新版本的特性加速Llama2模型,為Llama2客製化Prompt,並用LangChain 實現可連網取得最新消息的輔助搜尋功能
運用BF16與NHWC技術實現進階版LLM微調訓練最佳化
本文要來介紹如何利用BF16半精度浮點數以及將影像資料設為NHWC格式兩項技術,來最佳化大型AI模型的訓練速度與記憶體節省,並延續以
如何利用低位元量化技術進一步提升大模型推論性能
相比運算量的增加,大模型推論速度更容易受到記憶體頻寬的影響,導致算力資源無法得到充分發揮,進而影響性能;低位元量化技術是讓大語言模型(LLM)在部署過程中實現性能需求的最佳方案之一,本文將探討低位元量化技術如何幫助LLM提升性能,以及新版OpenVINO對於低位元量化技術的支援。
活用IPEX和Intel GPU加速大型語言模型訓練效率
以IPEX (Intel-Extension-for-PyTorch)搭配Intel硬體產品,可提供最佳化功能大幅提升運作效能。例如透過PyTorch的