|
運用BF16與NHWC技術實現進階版LLM微調訓練最佳化
12 月18

運用BF16與NHWC技術實現進階版LLM微調訓練最佳化

本文要來介紹如何利用BF16半精度浮點數以及將影像資料設為NHWC格式兩項技術,來最佳化大型AI模型的訓練速度與記憶體節省,並延續以微調模型訓練為範例,透過完整程式碼來示範如何發揮這兩項新技術的用法和魅力。

Read More
如何利用低位元量化技術進一步提升大模型推論性能
12 月12

如何利用低位元量化技術進一步提升大模型推論性能

相比運算量的增加,大模型推論速度更容易受到記憶體頻寬的影響,導致算力資源無法得到充分發揮,進而影響性能;低位元量化技術是讓大語言模型(LLM)在部署過程中實現性能需求的最佳方案之一,本文將探討低位元量化技術如何幫助LLM提升性能,以及新版OpenVINO對於低位元量化技術的支援。

Read More
活用IPEX和Intel GPU加速大型語言模型訓練效率
12 月05

活用IPEX和Intel GPU加速大型語言模型訓練效率

以IPEX (Intel-Extension-for-PyTorch)搭配Intel硬體產品,可提供最佳化功能大幅提升運作效能。例如透過PyTorch的裝置來發揮Intel GPU的潛能,加速AI模型的訓練和推論。本篇文章將說明如何善用上述兩項產品來實現效能的大幅提升,仍然以微調訓練的範例來展現它們的特性,並說明其使用方法和流程。

Read More
利用Intel平台提升LLM微調與訓練效率:ResNet50+LoRA範例
11 月29

利用Intel平台提升LLM微調與訓練效率:ResNet50+LoRA範例

本文將說明如何善用英特爾(Intel)所研發的新產品和相關技術,來提升AI模型的訓練效率,以便提供更優質的推論功能。為了循序漸進介紹上述的新產品及其相關的使用技術,本文先從大家熟悉ResNet50圖像分類模型做為起步範例,並搭配LoRA來進行外掛訓練,以便從這簡單範例中充分理解如何活用上述的創新產品及相關技術。

Read More
目前有哪些大型程式語言模型 (Code LLM)可用?StarCoder、Code Llama、Codex!
11 月23

目前有哪些大型程式語言模型 (Code LLM)可用?StarCoder、Code Llama、Codex!

本文將介紹開發者正關注大型程式語言模型 – Code LLM,包括Hugging Face推的StarCoderBase/StarCoder、Meta推的Code Llama,以及OpenAI推的Codex,未來將成為開發者重要的編碼助手。

Read More
【開箱評測】OpenVINO讓你不上網也能和Dolly聊聊天
7 月04

【開箱評測】OpenVINO讓你不上網也能和Dolly聊聊天

以往在AI模型部署優化及推論部份,通常都會想到使用 Intel OpenVINO,不過大家多半只注意到它在「電腦視覺」相關的應用,殊不知自從2022.1版後就已開始加入許多「自然語言」的範例。而最近2023.0版又更加強GPU處理記憶體動態外形(Dynamic Shape)的能力,使得如生成型預訓練變換模型(GPT)這類基於轉換器(Transfomer)技術的大型語言模型能得到更好的實現。

Read More