本篇文章,將以MT5-small預訓練大模型為例,並以Python源碼(Source Code)來說明如何進行LoRA微調三步驟。

本篇文章會說明Gemma為何會採取Decoder-Only Transformer架構,並針對Decoder-Only Transformer架構進行介紹。

Gemma模型是Text到Text的大型語言模型,非常適合各種文本生成任務。其有多種使用途徑,包括使用新資料來微調Gemma模型、拿Gemma開源程式碼,而從頭開始訓練它,本文將介紹如何從0訓練企業自用Gemma模型。

本文要來介紹如何利用BF16半精度浮點數以及將影像資料設為NHWC格式兩項技術,來最佳化大型AI模型的訓練速度與記憶體節省,並延續以

本文會拿Diffusion來學習及創作書法字體,也就是俗稱的:寫書法。雖然Diffusion也能學習依循標準筆順,來逐筆寫出字形。為了從簡單範例出發,本文先讓Diffusion來學習程生成整個字形,而不是逐一生成各筆劃。
Please wait...



