|

【CAVEDU講堂】深入使用NVIDIA Jetson Inference機器學習專案 – 電腦視覺圖片分類任務

   
作者/圖片來源:CAVEDU 教育團隊

Jetson Inference是官方推出的體驗套件,它提供了三種最常見的AI應用於電腦視覺的類型,imagenet用於圖像辨識 ( Image Recognition )、detectNet用於物件辨識 ( Object Detection )、segNet用於語意分割。

API 的介紹再這裡,今天會想辦法盡量深入了解,以往的文章只有初步探討與實作,這次會帶到更多的細節,而我們今天都是使用 Python的程式執行。

建置環境

建置方法

我們跟著教學走會先遇到 Hello AI World,再這裡是教大家怎麼去建置 Jetson Inference的環境,有兩種使用方法:

  • 使用Docker Container ( 30 分鐘 )
  • 從來源建置 ( 1.5小時 )

通常為了教學順暢,會從頭建置燒錄SD卡,但有時映像檔過於龐大,搬運不易,所以使用 Docker來做相對而言會比較容易,如果想要從頭建置可以參考這邊。

今天我們使用Docker來運作,開始之前須要先將jetson Inference下載下來:

$ git clone --recursive https://github.com/dusty-nv/jetson-inference

$ cd jetson-inference

$ docker/run.sh

執行run.sh之後會自動根據你現在的JetPack版本去DockerHub抓取對應的容器 (Contrainer),並且如果你有使用攝影機的話這時候也會自動讀取。

Docker Container

關於Docker Container的敘述這邊簡單介紹一下,可以想像是一個獨立的虛擬環境,使用者,進入容器之後會與你原生系統的檔案區隔開來,但也是可以透過「掛接」的方式到容器中,像這次如果直接執行run.sh的話,會自動將jetson-inference/data掛載到docker的 /jetson-inference/build/aarch64/bin/ 當中,所以你可以在外部新增或刪除圖片。

下載DNN模型、安裝PyTorch

按下Enter開始建構環境,建置環境的過程中還有兩個要進行下載的動作,分別是「下載DNN模型」、「是下載PyTorch」,整個run的過程耗費時間相當久,但你也會注意到大部分都是因為要下載DNN模型的關係;基本上PyTorch會選擇Python3.6版本的,模型除非自己要其他的不然就是直接按確定就可以了,預設的情況下圖片分類會載兩個、物件辨識會載四個、語意分割會載六個模型。

本文為會員限定文章

立即加入會員! 全站文章無限看~

                               

已經是會員? 按此登入

只需不到短短一分鐘...

輸入您的信箱與ID註冊即可享有一切福利!

會員福利
1

免費電子報

2

會員搶先看

3

主題訂閱

4

好文收藏

CAVEDU 教育團隊

Author: CAVEDU 教育團隊

CAVEDU 教育團隊是由一群對教育充滿熱情的大孩子所組成的機器人科學教育團隊。致力推動國內機器人教育。

Share This Post On

Submit a Comment

發佈留言必須填寫的電子郵件地址不會公開。 必填欄位標示為 *